1 (i)	$a = 0.8, \ b = 0.85, \ c = 0.9.$	B1 for any one B1 for the other two	2
(ii)	P(Not delayed) = $0.8 \times 0.85 \times 0.9 = 0.612$	M1 for product A1 CAO	
	P(Delayed) = 1 − 0.8 × 0.85 × 0.9 = 1 − 0.612 = 0.388	M1 for 1 – P(delayed) A1FT	4
(iii)	P(just one problem) = 0.2×0.85×0.9 + 0.8×0.15×0.9 + 0.8×0.85×0.1 = 0.153 + 0.108 + 0.068 = 0.329	B1 one product correct M1 three products M1 sum of 3 products A1 CAO	4
(iv)	P(Just one problem delay)	M1 for numerator	
	$= \frac{P(\text{Just one problem and delay})}{P(\text{Delay})} = \frac{0.329}{0.388} = 0.848$	M1 for denominator A1FT	3
(v)	P(Delayed No technical problems)	M1 for 0.15 +	
	<i>Either</i> = $0.15 + 0.85 \times 0.1 = 0.235$	A1CAO	
	$Or = 1 - 0.9 \times 0.85 = 1 - 0.765 = 0.235$	M1 for product M1 for 1 – product A1CAO	
	$Or = 0.15 \times 0.1 + 0.15 \times 0.9 + 0.85 \times 0.1 = 0.235$	M1 for all 3 products M1 for sum of all 3 products A1CAO	
	Or (using conditional probability formula)		3
	P(Delayed and no technical problems)		
	P(No technical problems)	M1 for numerator	
	$=\frac{0.8\times0.15\times0.1+0.8\times0.15\times0.9+0.8\times0.85\times0.1}{0.8}$	M1 for denominator	
	$=\frac{0.188}{0.8}=0.235$	A1CAO	
(vi)	Expected number = $110 \times 0.388 = 42.7$	M1 for product	2
		TOTAL	18

2 (i)	P(R) × P(L) = $0.36 \times 0.25 = 0.09 \neq P(R \cap L)$ Not equal so not independent. (Allow $0.36 \times 0.25 \neq 0.2$ or 0.09 ≠ 0.2 or $\neq p(R \cap L)$ so not independent)	M1 for 0.36×0.25 or 0.09 seen A1 (numerical justification needed)	2
(ii)	$R \underbrace{\begin{array}{c} \\ 16 \\ 0.2 \\ 0.05 \\ 0.59 \end{array}}$	G1 for two overlapping circles labelled G1 for 0.2 and either 0.16 or 0.05 in the correct places G1 for all 4 correct probs in the correct places (including the 0.59) The last two G marks are independent of the labels	3
(iii)	$P(L \mid R) = \frac{P(L \cap R)}{P(R)} = \frac{0.2}{0.36} = \frac{5}{9} = 0.556 \text{ (awrt 0.56)}$ This is the probability that Anna is late given that it is raining. (must be in context) Condone 'if' or 'when' or 'on a rainy day' for 'given that' but <u>not</u> the words 'and' or 'because' or 'due to'	M1 for 0.2/0.36 o.e. A1 cao E1 (indep of M1A1) Order/structure <u>must</u> be correct i.e. no reverse statement	3
		TOTAL	8

3 (i)	P(W) × P(C) = $0.20 \times 0.17 = 0.034$ P(W∩C) = 0.06 (given in the question) Not equal so not independent (Allow $0.20 \times 0.17 \neq 0.06$ or ≠ p (W ∩ C) so not independent).	M1 for multiplying or 0.034 seen A1 (numerical justification needed)	2
(ii)	$W 0.1 \\ 0.06 \\ 0.11 \\ 0.69$	G1 for two overlapping circles labelled G1 for 0.06 and either 0.14 or 0.11 in the correct places G1 for all 4 correct probs in the correct places (including the 0.69) NB No credit for Karnaugh maps here	3
(iii)	$P(W C) = \frac{P(W \cap C)}{P(C)} = \frac{0.06}{0.17} = \frac{6}{17} = 0.353 \text{ (awrt 0.35)}$	M1 for 0.06 / 0.17 A1 cao	2
(iv)	Children are more likely than adults to be able to speak Welsh or 'proportionally more children speak Welsh than adults' Do not accept: 'more Welsh children speak Welsh than adults'	E1FT Once the correct idea is seen, apply ISW	1
		ICIAL	•

4	<i>X</i> ~ B(8, 0.05)		
(i)	(A) $P(X = 0) = 0.95^8 = 0.6634$ 0.663 or better	M1 0.95 ⁸ A1 CAO Or B2 (tables)	2
	<i>Or</i> using tables $P(X = 0) = 0.6634$		
	(B) $P(X = 1) = \binom{8}{1} \times 0.05 \times 0.95^7 = 0.2793$	M1 for $P(X = 1)$ (allow 0.28 or better) M1 for $1 - P(X \le 1)$	3
	P(X > 1) = 1 - (0.6634 + 0.2793) = 0.0573	must have both probabilities A1cao (0.0572 – 0.0573)	
	<i>Or</i> using tables P(<i>X</i> > 1) = 1 − 0.9428 = 0.0572	M1 for $P(X \le 1) 0.9428$ M1 for $1 - P(X \le 1)$ A1 cao (must end in2)	
(ii)	Expected number of days = $250 \times 0.0572 = 14.3$ awrt	M1 for 250 x prob(B) A1 FT but no rounding at end	2
		TOTAL	7