$\begin{aligned} & \hline 1 \\ & \text { (i) } \end{aligned}$	$a=0.8, b=0.85, c=0.9$.	B1 for any one B1 for the other two	2
(ii)	$\begin{aligned} & P(\text { Not delayed })=0.8 \times 0.85 \times 0.9=0.612 \\ & P(\text { Delayed })=1-0.8 \times 0.85 \times 0.9=1-0.612=0.388 \end{aligned}$	M1 for product A1 CAO M1 for 1 - P(delayed) A1FT	4
(iii)	$\begin{aligned} & \text { P(just one problem) } \\ & \quad=0.2 \times 0.85 \times 0.9+0.8 \times 0.15 \times 0.9+0.8 \times 0.85 \times 0.1 \\ & =0.153+0.108+0.068=0.329 \end{aligned}$	B1 one product correct M1 three products M1 sum of 3 products A1 CAO	4
(iv)	$\begin{aligned} & P(\text { Just one problem \| delay) } \\ & =\frac{P(\text { Just one problem and delay })}{P(\text { Delay })}=\frac{0.329}{0.388}=0.848 \end{aligned}$	M1 for numerator M1 for denominator A1FT	3
(v)	$\begin{aligned} & P(\text { Delayed } \mid \text { No technical problems }) \\ & \text { Either }=0.15+0.85 \times 0.1=0.235 \\ & \text { Or }=1-0.9 \times 0.85=1-0.765=0.235 \\ & \text { Or }=0.15 \times 0.1+0.15 \times 0.9+0.85 \times 0.1=0.235 \\ & \text { Or (using conditional probability formula) } \\ & \frac{P(\text { Delayed and no technical problems })}{P(\text { No technical problems })} \\ & =\frac{0.8 \times 0.15 \times 0.1+0.8 \times 0.15 \times 0.9+0.8 \times 0.85 \times 0.1}{0.8} \\ & =\frac{0.188}{0.8}=0.235 \end{aligned}$	M1 for 0.15 + M1 for second term A1CAO M1 for product M1 for 1 - product A1CAO M1 for all 3 products M1 for sum of all 3 products A1CAO M1 for numerator M1 for denominator A1CAO	3
(vi)	Expected number $=110 \times 0.388=42.7$	M1 for product A1FT	2
		TOTAL	18

2 (i)	$\mathrm{P}(\mathrm{R}) \times \mathrm{P}(L)=0.36 \times 0.25=0.09 \neq \mathrm{P}(R \cap L)$ Not equal so not independent. (Allow $0.36 \times 0.25 \neq 0.2$ or 0.09 $\neq 0.2$ or $\neq \mathrm{p}(\mathrm{R} \cap \mathrm{L})$ so not independent)	M1 for 0.36×0.25 or 0.09 seen A1 (numerical justification needed)	$\mathbf{2}$
(ii)		G1 for two overlapping circles labelled G1 for 0.2 and either 0.16 or 0.05 in the correct places G1 for all 4 correct probs in the correct places (including the 0.59$)$	$\mathbf{3}$

$\begin{aligned} & \hline 3 \\ & \text { (i) } \end{aligned}$	$\mathrm{P}(W) \times \mathrm{P}(C)=0.20 \times 0.17=0.034$ $P(W \cap C)=0.06$ (given in the question) Not equal so not independent (Allow $0.20 \times 0.17 \neq 0.06$ or $\neq \mathrm{p}(\mathrm{W} \cap \mathrm{C})$ so not independent).	M1 for multiplying or 0.034 seen A1 (numerical justification needed)	2
(ii)	The last two G marks are independent of the labels	G1 for two overlapping circles labelled G1 for 0.06 and either 0.14 or 0.11 in the correct places G1 for all 4 correct probs in the correct places (including the 0.69) NB No credit for Karnaugh maps here	3
(iii)	$\mathrm{P}(W \mid C)=\frac{\mathrm{P}(W \cap C)}{\mathrm{P}(\mathrm{C})}=\frac{0.06}{0.17}=\frac{6}{17}=0.353$ (awrt 0.35)	M1 for 0.06 / 0.17 A1 cao	2

(iv)	Children are more likely than adults to be able to speak Welsh or 'proportionally more children speak Welsh than adults' Do not accept: 'more Welsh children speak Welsh than adults'	E1FT Once the correct idea is seen, apply ISW	$\mathbf{1}$
		TOTAL	$\mathbf{8}$

$\begin{aligned} & \hline 4 \\ & \text { (i) } \end{aligned}$	$X \sim \mathrm{~B}(8,0.05)$ (A) $\mathrm{P}(\boldsymbol{X}=0)=0.95^{8}=0.6634 \quad 0.663$ or better Or using tables $\mathrm{P}(\boldsymbol{X}=0)=0.6634$ (B) $\quad \mathrm{P}(\boldsymbol{X}=1)=\binom{8}{1} \times 0.05 \times 0.95^{7}=0.2793$ $\mathrm{P}(X>1)=1-(0.6634+0.2793)=0.0573$ Or using tables $\mathrm{P}(X>1)=1-0.9428=0.0572$	M1 $0.95^{8} \mathrm{~A} 1 \mathrm{CAO}$ Or B2 (tables) M1 for $\mathrm{P}(X=1)$ (allow 0.28 or better) M1 for $1-\mathrm{P}(X \leq 1)$ must have both probabilities A1cao (0.0572 0.0573) M1 for $\mathrm{P}(X \leq 1) 0.9428$ M1 for $1-\mathrm{P}(X \leq 1)$ A1 cao (must end in...2)	2 3
(ii)	Expected number of days $=250 \times 0.0572=14.3$ awrt	M1 for $250 \times \operatorname{prob}(B)$ A1 FT but no rounding at end	2
		TOTAL	7

